
1

Overview and Usage of Binary Analysis Frameworks

Florian Magin fmagin@ernw.de

2

whoami

o Security Research at ERNW Research GmbH
from Heidelberg, Germany

o Organizer of the Wizards of Dos CTF team
from Darmstadt, Germany

o Reach me via:
o Twitter: @0x464D

o Email: fmagin@ernw.de

3

Who we are

o Germany-based ERNW GmbH
o Independent

o Deep technical knowledge

o Structured (assessment) approach

o Business reasonable recommendations

o We understand corporate

o Blog: www.insinuator.net

o Conference: www.troopers.de

4

Agenda

What actually is automated analysis?

How does it work?

What else are some of the frameworks capable
of? (In this case angr)

5

What is Automated Binary Analysis?

6

-> Binary Analysis performed by algorithms

What is Automated Binary Analysis?

7

Wait, isn’t that impossible?

o It’s impossible to generally tell if a program
halts for a given input (Halting Problem)

o Also Rice’s Theorem

o Also, what exactly are we even looking for?

o Crashes?

o Memory Corruptions?

o Logic Errors?

8

Bit of History

o The ideas themselves are 40 years old
o Robert S. Boyer and Bernard Elspas and Karl

N. Levitt, SELECT--a formal system for testing
and debugging programs by symbolic
execution, 1975

o Analysis is resource intensive
o Cray-1 supercomputer from 1975 had

80MFLOPS (8MB of RAM)

o iPhone 5s from 2013 produces about 76.8
GFLOPS (1GB of RAM)

9

DARPA CGC

o Task: Develop a “Cyber Reasoning System”

o Big push in moving the ideas from academia
to practicability

o Qualification Prize: $750,000

o Final Prizes:

1. $2,000,000

2. $1,000,000

3. $750,000

10

DARPA CGC

o CRS needs to:
o Find vulnerabilities

o Patch them

o Ran on 64 Nodes, each:
o 2x Intel Xeon Processor E5-2670 v2 (25M cache,

2.50GHz) (20 physical cores per machine)

o 256GB Memory

o 7 finalists, winner competed at DEFCON CTF

o It was better than some of the human teams
some of the time

11

Overview of the basic concepts

How do they work?

12

Intermediate Representations

o What do we actually analyze?

o Every architecture is different

o Common Representation

o Typical case of too may standards

o VEX IR (used by Valgrind and angr)

o Binary Ninja IR

o LLVM IR

o So many more

13

CFG Recovery

o Recursively build a graph with jumps as
edges and basic blocks as nodes

o Easy with calls and direct jumps

o But what about “jmp eax”?

o Jump table

o Callbacks/Higher Order Functions

o Functions of Objects in OOP

o “Graph-based vulnerability discovery”

14

Value-Set Analysis

o Approximate program states

o Values in memory or registers

o Reconstruct buffers

o Can be enough to detect buffer overflows

o Research paper is in the last slide (18 Pages)

15

Data-Flow Analysis/Taint Analysis

o Track where data ends up

o Data dependencies

o Discover functions that handle user input

o Different granularity:

o Bits

o Bytes

16

Constraint Solving

o A LOT of Math involved

o Highly simplified:

 a = 5

 b = 15

 x < b && x > a

 x = ?

17

Z3 Theorem Prover

o Developed by Microsoft Research

o Microsoft uses it to formally verify some parts
of their products

o Windows Kernel

o Hyper-V

o MIT License

o Provides a SMT Solver

18

o Claripy is the abstraction layer
for constraint solvers like Z3
used by angr

o Only exposes needed
functionality for binary analysis

DEMO

Z3/Claripy Example

19

Symbolic Execution

o Symbolic instead of concrete variables

o Following example shamelessly stolen from
the angr presentations

20

21

22

23

24

25

AST

o Abstract Syntax Tree

o Basically a representation for the constraints
from the previous slide

26

Side Note: LLVM Compiler

Infrastructure

o Own IR (LLVM IR)

o Own symbolic execution engine (KLEE)

o Own constraint solver (Kleaver)

27

What to do with all this?

o These techniques don’t scale

o State Explosion

o Constraint solving is generally
NP-Complete

o Combine with something really
smart but slow: a human

o Combine with something really
dumb but fast: a fuzzer

28

Augmented Fuzzing

o Taint Analysis to discover what branch
depends on what input

o Symbolic Execution with constraint solver to
build input to take that branch

29

angr

o Most beginner friendly of all tools

o Written in Python

o Good Documentation

o Plenty of available research

o Used by Mechaphish (3rd at Darpa’s CGC)

o Developed at University of California, Santa
Barbara

o Even the CIA uses angr!

30

Triton

o x86 and x86_64 only

o Designed as a library (LibTriton.so)

o Should be easier to integrate into C Projects

o Has python bindings

o Not focused on automating but assisting

o Sponsored by Quarkslab

31

Others

o Bitblaze

o University of California, Berkeley

o bap: Binary Analysis Platform

o Carnegie Mellon University/ForAllSecure

o Written in OCaml

o Used by Mayhem (1st Place at Darpa’s CGC)

o Miasm

32

Overview of Frameworks
and Projects

Source: Angr
Tutorial (so
obviously biased)

33

Installing Angr

o My setup: Vagrant Box with Archstrike
Repositories (turns out that’s outdated)

o pacman –S angr

o Alternatives:

o Official Docker Image

o pip2 install angr

34

o Automagically import binary
functions

o angr detects calling convention

o Maps python types to binary
representation

o Call them from python

o With concrete values

o With symbolic value

Foreign Function Interface

>>> import angr

>>>b=angr.Project(‘/path/binary’)

>>>f = b.factory.callable(address)

>>>f?

Type: Callable

[…]

Callable is a representation of a function in the
binary that can be

interacted with like a native python function.

[…]

35

o Get an input so that a function
returns a certain value

o Function can be from Python or
from binary(see FFI)

o f(x,y) -> (x*3 >> 1) * y

o f(?,0x42) - > 0x76E24

Inversing Functions

36

o Get an input so that a function
returns a certain value

o Function can be from Python or
from binary(see FFI)

o f(x,y) -> (x*3 >> 1) * y

o f(?,0x42) - > 0x76E24

Inversing Functions

DEMO

37

o Get an input so that a function
returns a certain value

o Function can be from Python or
from binary(see FFI)

o f(x,y) -> (x*3 >> 1) * y

o f(?,0x42) - > 0x76E24

o We got two possible
solutions

o 0x1337 (intended)

o 0x555555555555688c which
returns
0x210000000000076e24

-> Integer Overflow

Inversing Functions

38

o Binary that takes some user
input

o stdin

o argv

o Some file

o Checks it against constraints

o Determines if it’s valid

Automagic Solving of Crackmes

DEMO

39

o Binary that takes some user
input

o stdin

o argv

o Some file

o Checks it against constraints

o Determines if it’s valid

o We just declare that input as
symbolic

o Choose a starting point and
explore the possible paths
from there

o Solve for an input that
brings us down the wanted
path that’s the solution

Automagic Solving of Crackmes

40

o Breakpoints with callbacks
before or after:
o Instructions or address

o Memory read/write

o Register read/write

o Many others

o Hooks
o Optimized libc functions

o Own Python Code

>>> import angr, simuvex

>>>b=angr.Project(‘/path/binary’)

>>> s = b.factory.entry_state()

>>> def debug_func(state):

... print 'Read',
state.inspect.mem_read_expr, 'from',
state.inspect.mem_read_address

>>> s.inspect.b('mem_write',
when=simuvex.BP_AFTER, action=debug_func)

Debugging capabilities

41

Anti-Anti-Debugging

o angr is not a debugger

o Most tricks wont work

o Might accidentally break angr in other ways

o Simuvex or Unicorn can be used as an
emulator

o Breakpoints without the program noticing

o Invisible Hooks

o Overall it needs a different approach

42

Angr Cheat Sheet

o Currently developing an angr cheat sheet

o Common Commands to look up

o Features that are hidden somewhere in the
docs

o Release $soon

o Probably as part of the angr/angr-doc repo

43

Other Tools to know

o Unicorn Emulator
o Emulate all the architectures!

o Capstone
o Disassemble all the architectures!

o Interesting Mechaphish Components
o angrop (generates ROP Chains)

o Driller (Augmented Fuzzing)

o Everything in https://github.com/mechaphish

44

www.ernw.de

www.insinuator.net

Thank you for your attention

fmagin@ernw.de

0x464D

https://www.ernw.de/
https://www.insinuator.net/

45

References & Literature

o “SoK: (State of) The Art of War: Offensive Techniques in Binary
Analysis”

o https://docs.angr.io/

o VSA:

Analyzing Memory Accesses in x86 Executables

Gogul Balakrishnan and Thomas Reps

Comp. Sci. Dept., University of Wisconsin; {bgogul,reps
}@cs.wisc.edu

https://docs.angr.io/

