) W,
Y

>-(®) ERNW
o W R ™

L, N
\ "\ 4

Overview and Usage of Binary Analysis Frameworks

Florian Magin fmagin(dernw.de

-(®) ERNW
d providing security.

whoami

o Security Research at ERNW Research GmbH
from Heidelberg, Germany

o Organizer of the Wizards of Dos CTF team
from Darmstadt, Germany

o Reach me via:
o Twitter: (@0x464D
o Email: fmagin(dernw.de

2

-(®) ERNW
d providing security.

Who we are
o Germany-based ERNW GmbH

o Independent

Deep technical knowledge

Structured (assessment) approach
Business reasonable recommendations
We understand corporate

O O O O

o Blog: www.insinuator.net

o Conference: www.troopers.de

-(®) ERNW

d providing security.

Agenda

What actually i1s automated analysis?
How does it work?

What else are some of the frameworks capable
of? (In this case angr]

What is Automated Binary Analysis?

What is Automated Binary Analysis?

-> Binary Analysis performed by algorithms

Wait, isn’t that impossible?

o It's impossible to generally tell if a program
halts for a given input (Halting Problem)

o Also Rice’'s Theorem
o Also, what exactly are we even looking for?

o Crashes?
o Memory Corruptions?
o Logic Errors?

-(®) ERNW
d providing security.

Bit of History

o The ideas themselves are 40 years old

o RobertS. Boyer and Bernard Elspas and Karl
N. Levitt, SELECT--a formal system for testing
and debugging programs by symbolic
execution, 1975

o Analysis is resource intensive

o Cray-1supercomputer from 1975 had
80MFLOPS (8MB of RAM]

o IPhone 5s from 2013 produces about 76.8
GFLOPS (1GB of RAM]

DARPA CGC -

Task: Develop a “Cyber Reasoning System” ﬁ.

Big push in moving the ideas from academia C =

to practicability E Y B E R
Qualification Prize: $750,000 GRAND CHALLENGE
Final Prizes:

1. $2,000,000

2. $1,000,000

3. $750,000

-(®) ERNW
providing security.

DARPA CGC

o CRS needs to:
o Find vulnerabilities

o Patch them

o Ran on 64 Nodes, each:
2x Intel Xeon Processor E5-2670 v2 (25M cache,

2.50GHz] (20 physical cores per machine]

o 256GB Memory
o 7 finalists, winner competed at DEFCON CTF

It was better than some of the human teams
some of the time

s =
L0
e o~
(=
N |
<,
N —
—
j <C
Y
[)
Ll
=

©)

O

How do they work?

Overview of the basic concepts

11

of

~(®)E

RNW

ding security.

Intermediate Representations

o What do we actually analyze?

o Every architecture is different
» Common Representation

o Typical case of too may standards

©)

O

O

O

VEX IR (used by Valgrind and angr]
Binary Ninja IR

LLVM IR

So many more

12

-(®) ERNW

d providing security.
bl e =]

; void werifyPIN_A(wvoid)
EXPORT verifyPIN_A
verifyPIN_A
PUSH {R4,R5,LR}
LDR RE, =g_authenticated
LDR R4, =g_pte
CFG Recover
STEB RO, [R5]
LDRSE.W RO, [R4]
CMP RO, {0

o Recursively build a graph with jumps as T S—
edges and basic blocks as nodes i
o Easy with calls and direct jJumps s i —

LDEB RO, [R4]

o Butwhat about “jmp eax”? R o (N = -t
MOVS RO, ;ginn

o Jump table N
; End of function verifyPIN_A
o Callbacks/Higher Order Functions y

o Functions of Objects in OOP

POP (R4,R5,BC}

o “Graph-based vulnerability discovery”

13

O O O O O

Value-Set Analysis

Approximate program states

Values in memory or registers

Reconstruct buffers

Can be enough to detect buffer overflows
Research paper is in the last slide (18 Pages]

14

Data-Flow Analysis/Taint Analysis

Track where data ends up
Data dependencies
Discover functions that handle user input

Different granularity:
o Bits
o Bytes

15

Constraint Solving

o A LOT of Math involved
o Highly simplified:

> a=>b

> b=15

> x<b&&Xx>a

> X=7

16

Z3 Theorem Prover

o Developed by Microsoft Research .
. . . Microsoft:
o Microsoft uses it to formally verify some parts

of their products Resea rCh

o Windows Kernel
o Hyper-V
o MIT License
o Provides a SMT Solver

17

Z3/Claripy Example

o Claripy is the abstraction layer
for constraint solvers like Z3
used by angr

o Only exposes needed
functionality for binary analysis

DEMO

18

of

Symbolic Execution

o Symbolic instead of concrete variables

o Following example shamelessly stolen from
the angr presentations

19

X = 1nt (input())

o- ERNW if x >= 10:

d providing security. if x < 100:
print "You win!"
else:
print "You lose!" State A
else: Variables
print "You lose!" x =277

Constraints

% = 1nt (1hpit ())

o ERNW o w5 e 1)
d providing security. 1E ¥ < 10
primt "Y win!"

else:

print "¥ou 1 State A
else Variables
) " "
prin You lose! = 2727

Constraints

State AA \ State A
Variables Variables
X =7?? X =777
Constraints Constraints

X< 10 x>=10

X = 1nt (input())

o- ERNW if x >= 10:

d providing security. if x < 100:
print "You win!"
else:
pPint "You leselr State AA State AB
else: Variables Variables
print "You lose!" X = 2972 X =272

Constraints Constraints
x<10 x>=10

-(®) ERNW
d providing security.

X = 1nt (input())
1T 2 e 2
if < 1003
pELRT ™Yo
else:

else:
print "You

State AA

Variables
xX=2?2?

Constraints
<10

DN

State AB

Variables
X =277

Constraints

x>=10

State A%\

State ABA

Variables\ Variables
X = 277 X = 227

\ Constraints

x>=10
x >=100

\ Constraints

x>=10
x <100

X = 1nt (input())

o- ERNW if x >= 10:

d providing security. l f % L l O O .

' '
print "You win!" <
else: N
; " (L
print "You lose! S e
else:
print "You lose!" Variables
X =777

Constraints

x>=10
x <100

L

Concretized ABA

Variables
x =99

~(#) ERNW

d providing security.

AST

o Abstract Syntax Tree

o Basically a representation for the constraints
from the previous slide

Side Note: LLVM Compiler
Infrastructure

o Own IR (LLVM IR)
o Own symbolic execution engine (KLEE] COMPILER INFRASTRUCTURE

o Own constraint solver (Kleaver] W

26

-(®) ERNW

of

providing security.

What to do with all this?

These techniques don’t scale
o State Explosion

o Constraint solving is generally
NP-Complete

Combine with something really
smart but slow: a human

Combine with something really
dumb but fast: a fuzzer

I wrote a vulnerability
nnnnn er that abstracts
all the predicates in a
binary, traverses the
callgraph and generates
phormilaes to run then
with a SMT solver.

I found 1 vuln in

3 days with this tool.

He wrote a dumb ass

vulns in 1 day.

X

Good thing I'm
net a nldb like
that guy.

~(#) ERNW

d providing security.

Augmented Fuzzing

o Taint Analysis to discover what branch
depends on what input

o Symbolic Execution with constraint solver to
build input to take that branch

of

O O O O O O

angr

Most beginner friendly of all tools
Written in Python

Good Documentation

Plenty of available research

Used by Mechaphish (3™ at Darpa’s CGC])

Developed at University of California, Santa
Barbara

V\,\“’e ¥ X ""‘1»'
(57 2 IR
E | ek é
& ige

ven tne USES anNgr.: W«
- Ol y

o wrios U

29

Triton

o x86 and x86_64 only

o Designed as a library (LibTriton.so) T R I l 0 N

o Should be easier to integrate into C Projects Dynamic Binary Analysis

o Has python bindings

o Not focused on automating but assisting
o Sponsored by Quarkslab

30

-(®) ERNW
d providing security.

Others

o Bitblaze
o University of California, Berkeley
o bap: Binary Analysis Platform
o Carnegie Mellon University/ForAllSecure
o Written in OCaml
o Used by Mayhem (15t Place at Darpa’s CGC]

o Miasm

31

-(®) ERNW
O/ providing security.

Overview of Frameworks
and Projects

Source: Angr
Tutorial (so
obviously biased)

Comparison with other projects

. Microsoft Mayhem

Items angr KLEE BAP BitBlaze S2E Triton SAGE

Work on binaries w/o src
Online symbolic execution
Offline symbolic execution

Cross-platform analysis
Static analysis
Multi-platform/arch support
Open source

Actively maintained

Free license

38

(o V4

Installing Angr

o My setup: Vagrant Box with-Arehstrike
Repesiteries (turns out that's outdated)

o pacman =S angr

o Alternatives:
o Official Docker Image
o pip2install angr

33

-(®) ERNW

providing security.

of

Foreign Function Interface

o Automagically import binary
functions

O

O

angr detects calling convention

Maps python types to binary
representation

o Call them from python

O

O

With concrete values
With symbolic value

>>> import angr
>>>b=angr.Project(/path/binary’)
>>>f = b.factory.callable(address]
>>>f?

Type: Callable

[...]

Callable is a representation of a function in the
binary that can be

interacted with like a native python function.

[...]

34

Inversing Functions

Get an input so that a function
returns a certain value

Function can be from Python or
from binary(see FFI)

f(x,y) -> (x*3>> 1) *y
f(?,0x42) - > 0x76E24

35

Inversing Functions

Get an input so that a function
returns a certain value

Function can be from Python or
from binary(see FFI)

f(x,y) -> (x*3>> 1) *y
f(?,0x42) - > 0x76E24

DEMO

36

of

Inversing Functions

Get an input so that a function o We got two possible

returns a certain value solutions

Function can be from Python or o 0x1337 [intended)

from binary(see FFI) o 0x555555555555688¢ which
returns

f(x,y) -> (x*3>> 1) *y
f(?,0x42) - > 0x76E24

0x210000000000076e24
-> Integer Overflow

37

Automagic Solving of Crackmes

o Binary that takes some user
Input
o stdin D E M O
o argv
o Some file
o Checks i1t against constraints

o Determines if it's valid

38

Automagic Solving of Crackmes

o Binary that takes some user o We just declare that input as
Input symbolic
o stdin o Choose a starting point and
o argv explore the possible paths
o Some file from there

o Checks it against constraints o Solve for an input that

o Determines if it's valid brings us down the wanted

path mp that's the solution

39

-(®) ERNW
d providing security.

Debugging capabilities

o Breakpoints with callbacks >>> import angr, simuvex
before or after: >>>b=angr.Project(’/path/binary’)

. >>> s = pb.factory.entry state()
Instructions or address y-Emy—

© - >>> def debug_func(state):
o Memory read/write orint ‘Read’,
o Register read/write state.inspect.mem_read_expr, ‘from’,
state.inspect.mem_read_address
o Many others . . L
>>> s.inspect.b('mem_write’,
O HOOkS when=simuvex.BP_AFTER, action=debug_func]

o Optimized libc functions
o Own Python Code

40

-(®) ERNW
d providing security.

Anti-Anti-Debugging

o angris not a debugger
o Most tricks wont work
o Might accidentally break angr in other ways

o Simuvex or Unicorn can be used as an
emulator

o Breakpoints without the program noticing
o Invisible Hooks

o Overall it needs a different approach

41

-(®) ERNW
d providing security.

Angr Cheat Sheet

o Currently developing an angr cheat sheet
o Common Commands to look up

o Features that are hidden somewhere in the
docs

o Release $soon
o Probably as part of the angr/angr-doc repo

42

-(®) ERNW
d providing security.

Other Tools to know

o Unicorn Emulator
o Emulate all the architectures!
o Capstone
o Disassemble all the architectures!

o Interesting Mechaphish Components
o angrop (generates ROP Chains)
o Driller (Augmented Fuzzing])
o Everything in https://github.com/mechaphish

43

o- ERNW aaasl
d providing security. QL ‘(ao -3

Thank you for your attention b Tt

Team

PREY
£ I?

Aol Ooene
e Spill
‘l,—.— ‘“{'.I

Weucily wll of

“r il doels :
ceol upacation £ e
abtuck gucka wrt pade

aailable” = Wi‘#'

52

3

1%.»4\
i

@ fmagin@ernw.de www.ernw.de = .

1Y

’ Ox464D www.insinuator.net

https://www.ernw.de/
https://www.insinuator.net/

-(®) ERNW
d providing security.

References & Literature

o "SoK: (State of] The Art of War: Offensive Techniques in Binary

Analysis”
o https://docs.angr.io/
o VSA:

Analyzing Memory Accesses in x86 Executables

Gogul Balakrishnan and Thomas Reps

Comp. Sci. Dept., University of Wisconsin; {bgogul,reps
}@cs.wisc.edu

https://docs.angr.io/

